Expression of genes related to tolerance to low temperature for maize seed germination.
نویسندگان
چکیده
The aim of this study was to characterize maize lines tolerant to cold temperatures during the germination process. Seeds from lines with different levels of tolerance to low temperatures were used; 3 lines were classified as tolerant and 3 as susceptible to low germination temperatures. A field was set up to multiply seeds from selected lines. After the seeds were harvested and classified, we conducted physiological tests and analyzed fatty acid content of palmitic, stearic, oleic, linoleic, linolenic, and eicosenoic acids. In proteomic analysis, the expression of heat-resistant proteins, including catalase, peroxidase, esterase, superoxide dismutase, and α-amylase, were evaluated. Transcript analysis was used to measure the expression of the genes AOX1, AOX2, ZmMPK-17, and ZmAN-13. The material showing the highest susceptibility to low germination temperatures contained high saturated fatty acid content. Expression of α-amylase in seeds soaked for 72 h at a temperature of 10°C was lower than expression of α-amylase when soaked at 25°C for the same amount of time. We observed variation in the expression of heat-resistant proteins in seeds of the lines evaluated. The genes AOX and Zm-AN13 were promising for use in identifying maize materials that are tolerant to low germination temperatures.
منابع مشابه
QTL Mapping of Low-Temperature Germination Ability in the Maize IBM Syn4 RIL Population
Low temperature is the primary factor to affect maize sowing in early spring. It is, therefore, vital for maize breeding programs to improve tolerance to low temperatures at seed germination stage. However, little is known about maize QTL involved in low-temperature germination ability. 243 lines of the intermated B73×Mo17 (IBM) Syn4 recombinant inbred line (RIL) population was used for QTL ana...
متن کاملThe Synergistic Priming Effect of Exogenous Salicylic Acid and H2O2 on Chilling Tolerance Enhancement during Maize (Zea mays L.) Seed Germination
Chilling stress is an important constraint for maize seedling establishment in the field. To examine the role of salicylic acid (SA) and hydrogen peroxide (H2O2) in response to chilling stress, we investigated the effects of seed priming with SA, H2O2, and SA+H2O2 combination on maize resistance under chilling stress (13°C). Priming with SA, H2O2, and especially SA+H2O2 shortened seed germinati...
متن کاملPhysiology of High Temperature Stress Tolerance at Reproductive Stages in Maize
Maize is a dynamic cereal of world’s agriculture community and is grown both in spring and autumn seasons in Pakistan. In case of spring sowing (February sowing) both pistillate and staminate flowers face high temperature stress and ultimately results in poor seed setting because of increased silk dryness and pollen desiccation. Maize accessions were identified on the basis of their performance...
متن کاملQTL Mapping in Three Connected Populations Reveals a Set of Consensus Genomic Regions for Low Temperature Germination Ability in Zea mays L.
Improving seed vigor in response to cold stress is an important breeding objective in maize that allows early sowing. Using two cold tolerant inbred lines 220 and P9-10 and two susceptible lines Y1518 and PH4CV, three connected F2:3 populations were generated for detecting quantitative trait locus (QTL) related to seed low-temperature germination ability. At 10°C, two germination traits (emerge...
متن کاملEffects of some PGRs on seedling emergence and CAT and POD activity of maize under low temperature stress. Hamid Reza Eisvand*, Nasim Fathi and Darioush Goudarzi
Low soil temperature is one of the reasons for poor germination and establishment of maize. The aim of this study was to evaluatethe possibilityof improvingthe seedling emergence and performance of maize under low temperature stress. A pot experiment was conducted on Zea maize (single cross 704) at 14 ºC as cold stress and seed treatments were priming with 200, 300 and 400ppm of GA3; 100, 200...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics and molecular research : GMR
دوره 14 1 شماره
صفحات -
تاریخ انتشار 2015